Money Talks:

Energy-Efficiency
 Financial Analysis

March 28, 2017

Meet Your Presenters:

Mike Carter

Contents

- Financial Decisions
- Simple Payback
- Time Value of Money
- Net Present Value
- Internal Rate of Return
- Life-Cycle Cost Analysis

Source: Svilen Milev at www.sxc.hu

- Combining Projects
- Resources

Financial Decisions

- Risk Tolerance

Annual energy use, efficient alternative

Committed Energy
Volume: Buy and use as intended

Financial Decisions

- Risk Tolerance

Financial Decisions

- Risk Tolerance
- Price Volatility
- Energy
- Equipment
- Labor
- Lost Opportunity
- Incentive programs
- Available capital

Simple Payback

- $\mathrm{SP}=\frac{\text { Initial Investment Cost }}{\text { Annual Savings }}=$ Payback Period

- How long until I get my money back?
- Is this an investment I should make?

Simple Payback

- $\mathrm{SP}=\frac{\text { Initial Investment Cost }}{\text { Annual Savings }}=$ Payback Period

- How long until I get my money back?
- Is this an investment I should make?

Simple Payback

- So why do we rely on simple payback?
- Our operating goals, budgets, bonuses, and rewards are fixed in an annual (time) format*
- Simple payback seems to fit naturally in our calendar-driven world*
- Quick and easy to use
- Easy to understand
- Investment questions are reduced to yes or no decisions
- What are the limitations of simple payback?
- Does not account for other energy savings or monetary net benefits that occur after the payback period
- Does not account for the time value of money

Simple Payback

- Which is the better investment?

\$10,000

$$
\mathrm{SP}=\frac{\$ 10,000}{\$ 2,500}=4 \mathrm{yrs}
$$

Poll Question

Which is the better financial investment?
a) Project A with a 3 year simple payback
b) Project B with a 4 year simple payback

B

Simple Payback

- When is simple payback best applied?
- Capital cost is relatively small for your budget
- Only one significant life-cycle operating cost (for example, electricity)
- Steady annual cash flow
- Simple equipment comparison (high-efficiency, roof-top AC unit vs. code-minimum unit)
- Equipment is stock, not custom
- Equipment examples
- Linear fluorescent lamps
- LED lamps
- Electronic fluorescent ballasts
- Exit signs
- Lighting controls
- Lighting fixtures

Simple Payback

- Payback Periods on Lighting Control Solutions from Electricity Savings Only (Years)
- Assumes $\$ 0.12 / \mathrm{kWh}, 88 \mathrm{ft} 2 / \mathrm{fixture}, 12 \mathrm{hrs} /$ day @ 100% else @35\%, no incentives

	Payback Periods on Lighting Control Solutions, Years								
Electric	Industry Range of Pricing for Lighting Controls (Per Sq. Ft. Installed)								
Savings	$\$ 1.00$	$\$ 1.25$	$\$ 1.50$	$\$ 1.75$	$\$ 2.00$	$\$ 2.25$	$\$ 2.50$		
35%	4.3	5.4	6.4	7.5	8.6	9.6	10.7		
40%	3.7	4.7	5.6	6.6	7.5	8.4	9.4		
45%	3.3	4.2	5.0	5.8	6.7	7.5	8.3		
50%	3.0	3.7	4.5	5.2	6.0	6.7	7.5		
55%	2.7	3.4	4.1	4.8	5.5	6.1	6.8		

[^0]
Simple Payback

- Sensitivity: Payback Periods at \$1.50 Per Sq. Ft. Installed - Assumes 88 ft ²/fixture, $12 \mathrm{hrs} / \mathrm{day}$ @ 100% else @35\%, no incentives

Payback Periods on Lighting Control Solutions, Years					
Electric	Electricity Price per Kilowatt-Hour				
Savings	$\$ 0.06$	$\$ 0.09$	$\$ 0.12$	$\$ 0.15$	$\$ 0.18$
35%	12.9	8.6	6.4	5.1	4.3
40%	11.2	7.5	5.6	4.5	3.7
45%	10.0	6.7	5.0	4.0	3.3
50%	9.0	6.0	4.5	3.6	3.0
55%	8.2	5.5	4.1	3.3	2.7

Source: Cleantech Approach, Lighting Controls-Savings, Solutions, Payback, and Vendor Profiles

Simple ROI

- ROI $=\frac{\text { Annual Savings }}{\text { Initial Investment Cost }}=\frac{1}{\mathrm{SP}}$
- $\operatorname{ROI}(A)=\frac{\$ 4,000}{\$ 12,000}=33 \%$
, $\mathrm{ROI}(B)=\frac{\$ 2,500}{\$ 10,000}=25 \%$

Source: www.sxc.hu

Time Value of Money

- Which would you prefer?

Time Value of Money

- Which would you prefer?

Time Value of Money

- Discount factor (DF)
$D F=1 /(1+R)^{N}$
$\mathrm{R}=$ Discount rate
$N=$ Number of periods (years)

Example: $1 /(1+0.07)^{3}=0.82$

Year	DF $(\mathrm{DR}=7 \%)$
0	1.00
1	0.93
2	0.87
3	0.82
4	0.76

Time Value of Money

- Which would you prefer?
- Discount rate is 7\%
- Today's value of $\$ 100$ one year from now
= \$100/(1+discount rate)
= \$100/1.07
= \$93 today
- Today's value of $\$ 110$ one year from now

$$
\begin{aligned}
& =\$ 110 /(1+\text { discount rate }) \\
& =\$ 110 / 1.07 \\
& =\$ 103 \text { today }
\end{aligned}
$$

Time Value of Money

- Which would you prefer?
- Discount rate is 7\%

Time Value of Money

- Present Value of Future Cash Flow - At a discount rate of 7%, the $\$ 100$ received one year from now is worth $\$ 93$ to us today.
- Could invest the money in a financial instrument
- Could invest in energy efficiency and decrease our costs
- Since money has time value, the present value of a promised future amount is worth less the longer you wait to receive it.

Net Present Value

- Assume a 7% discount rate.

Year (\mathbf{N})	Discount Rate	DF $1 /(1+R)^{N}$	Cash Flow	Present Value
1	7%	0.93	$\$ 4,000$	$\$ 3,720$
2	7%	0.87	$\$ 4,000$	$\$ 3,480$
3	7%	0.82	$\$ 4,000$	$\$ 3,280$
4	7%	0.76	$\$ 4,000$	$\$ 3,040$
	Totals		$\$ 16,000$	$\$ 13,520$

- Net present value (NPV) is the sum of the present value and the initial (negative) investment.
NPV = \$13,520-\$12,000 = \$1,520
- Cash flow $=\$ 16,000-\$ 12,000=\$ 4,000$

Net Present Value

NPV = \$14,900-\$10,000 = \$4,900
Cash flow $=\$ 20,000-\$ 10,000=\$ 10,000$

Net Present Value

- Which is the better investment?

NPV = \$1,520
Cash flow $=\$ 4,000$

\$10,000
$S P=\frac{\$ 10,000}{\$ 2,500}=4 \mathrm{yrs}$
NPV $=\$ 4,928$
Cash flow = \$10,000

Poll Question

Which is the better financial investment?
a) Project A
b) Project B

$$
B
$$

$$
\begin{array}{ll}
\mathrm{SP}=\frac{\$ 12,000}{\$ 4,000}=3 \mathrm{yrs} & \begin{array}{l}
\mathrm{NPV}=\$ 1,520 \\
\text { Cash flow }=\$ 4,000
\end{array} \\
\mathrm{SP}=\frac{\$ 10,000}{\$ 2,500}=4 \mathrm{yrs} & \begin{array}{l}
\text { NPV }=\$ 4,928 \\
\text { Cash flow }=\$ 10,000
\end{array}
\end{array}
$$

Net Present Value

- Advantages of NPV
- Incorporates all relevant information
- Single NPV number allows for easy comparisons across project types
- Allows for easy comparison of multiple financing alternatives (cash, loan, bond, lease)
- Disadvantages of NPV
- Does not expressly account for differing useful lives between projects being compared
- Residual value compensates for this
- High information requirements
- More complicated calculation

Internal Rate of Return

- The internal rate of return (IRR) is the discount rate that makes the net present value of the project equal to zero.
- Assumes you will reinvest positive cash flows at the IRR rate

Internal Rate of Return

- Advantages of IRR*
- Easier to understand than NPV
- Relates to the cost of borrowing
- Easily compared to hurdle rate for decision making
- Disadvantages of IRR*

- Removes the sensitivity of the analysis to alternative discount rates
- Cannot be calculated for 100\% debt financing
- Does not account for the project's magnitude or its impact on profits

Life-Cycle Cost Analysis

- Life-Cycle Cost
- The total cost of owning, operating, maintaining, and (eventually) disposing of the building system(s) over a given study period.
- For energy efficiency projects, we compare project alternatives with a baseline
- Initial equipment investment cost
- Finance costs
- Equipment replacement costs
- Disposal cost
- Energy cost

- Operation, maintenance, and repair costs

Life-Cycle Cost Analysis

- Non-Energy Benefits

Life-Cycle Cost Analysis

- Energy Efficiency Example

Equipment Cost	$\$ 164,000^{*}$	Loan Period (Yrs)	10	Discount Rate	7%	Baseline Energy	$\$ 80,000$
Cash \%	20%	Study Period (Yrs)	10	Loan Rate	7%	Annual Savings	$\$ 40,000$
Financed Amount	$\$ 131,200$	Useful Life (Yrs)	15	Inflation Rate	0%	Residual Value	$\$ 54,667$

*Includes rebates and increased M\&V costs
${ }^{* *}$ At end of Study Period (Straight Line Depreciation)
, $\mathrm{SP}=\frac{\$ 164,000}{\$ 40,000}=4.1 \mathrm{yrs}$

- $\mathrm{ROI}=\frac{\$ 40,000}{\$ 164,000}=24 \%$

Life-Cycle Cost Analysis

Life-Cycle Cost Analysis

Year	Baseline Energy Use	Energy Equipment		Energy Use	Loan	Net Annual Benefit (Cost)		PV Annual Benefit
0		$\$ 32,800$			$\$(32,800)$	$\$(32,800)$		
1	$\$ 80,000$		$\$ 40,000$	$\$ 18,280$	$\$ 21,720$	$\$ 20,299$		
2	$\$ 80,000$		$\$ 40,000$	$\$ 18,280$	$\$ 21,720$	$\$ 18,971$		
3	$\$ 80,000$		$\$ 40,000$	$\$ 18,280$	$\$ 21,720$	$\$ 17,730$		
4	$\$ 80,000$		$\$ 40,000$	$\$ 18,280$	$\$ 21,720$	$\$ 16,570$		
5	$\$ 80,000$		$\$ 40,000$	$\$ 18,280$	$\$ 21,720$	$\$ 15,486$		
6	$\$ 80,000$		$\$ 40,000$	$\$ 18,280$	$\$ 21,720$	$\$ 14,473$		
7	$\$ 80,000$		$\$ 40,000$	$\$ 18,280$	$\$ 21,720$	$\$ 13,526$		
8	$\$ 80,000$		$\$ 40,000$	$\$ 18,280$	$\$ 21,720$	$\$ 12,641$		
9	$\$ 80,000$		$\$ 40,000$	$\$ 18,280$	$\$ 21,720$	$\$ 11,814$		
10	$\$ 80,000$	$\$(54,667)$	$\$ 40,000$	$\$ 18,280$	$\$ 76,387$	$\$ 38,831$		
Total	$\$ 800,000$		$\$ 400,000$	$\$ 182,800$	$\$ 239,067$	$\$ 147,541$		

- Total cost $=\$ 32,800+\$ 182,800=\$ 215,600$
- Upgrade NPV = \$147,541
- $\operatorname{IRR}=66.4 \%$

Life-Cycle Cost Analysis

- Modified IRR (MIRR)
- IRR assumes interim positive cash flows (savings) are re-invested at the IRR percentage for the remaining period.
- If the IRR percentage is more than 10 percentage points above the Discount Rate, this is probably not a valid assumption.

$$
\text { MIRR }=\sqrt[n]{\frac{- \text { FV (positive cash flows, reinvestment rate) }}{P V \text { (negative cash flows, finance rate) }}}-1
$$

Life-Cycle Cost Analysis

- Modified IRR (MIRR)
- Example

IRR = 25.5\%

Year	Cash Flow
0	$-\$ 1,000$
1	$-\$ 4,000$
2	$+\$ 5,000$
3	$+\$ 2,000$

MIRR = 17.9\%

- Assumes finance rate of 10\% and reinvestment rate (cost of capital) of 12%

MIRR $=\sqrt{\frac{- \text { FV (positive cash flows, } 12 \%)}{\text { PV (negative cash flows, } 10 \% \text {) }}}-1$

Life-Cycle Cost Analysis

| 10 Yr . Total
 Savings | Simple
 Payback | ROI\% | IRR\% | MIRR
 $\%$ | LCC
 Savings |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Internal (Cash) | Total Cost | | | | |

Combining Projects

- Lighting Retrofit

Equipment Cost	$\$ 200,000^{*}$	Loan Period (Yrs)	5	Discount Rate	7%	Baseline Energy	$\$ 250,000$
Cash \%	100%	Study Period (Yrs)	10	Loan Rate	7%	Annual Savings	$\$ 100,000$
Financed Amount	0	Useful Life (Yrs)	5	Inflation Rate	0%	Residual Value**	0

$$
\mathrm{SP}=2 \text { years } \mid \mathrm{ROI}=50 \%
$$

- Chiller Replacement

Equipment Cost	$\$ 500,000^{*}$	Loan Period (Yrs)	10	Discount Rate	7%	Baseline Energy	$\$ 280,000$
Cash \%	100%	Study Period (Yrs)	10	Loan Rate	7%	Annual Savings	$\$ 84,000$
Financed Amount	0	Useful Life (Yrs)	20	Inflation Rate	0%	Residual Value**	$\$ 250,000$

$$
\mathrm{SP}=6 \text { years } \mid \mathrm{ROI}=17 \%
$$

Combining Projects

- Lighting Retrofit

Year	Baseline	Energy Efficient Alternative		LCC Calculation		
	Energy Use	Equipment	Energy Use	Loan	Net Annual Benefit (Cost)	PV Annual Benefit
0		$\$ 200,000$			$\$(200,000)$	$\$(200,000)$
1	$\$ 250,000$		$\$ 150,000$	0	$\$ 100,000$	$\$ 93,458$
2	$\$ 250,000$		$\$ 150,000$	0	$\$ 100,000$	$\$ 87,344$
3	$\$ 250,000$		$\$ 150,000$	0	$\$ 100,000$	$\$ 81,630$
4	$\$ 250,000$		$\$ 150,000$	0	$\$ 100,000$	$\$ 76,290$
5	$\$ 250,000$	$\$ 200,000$	$\$ 150,000$	0	$\$(100,000)$	$\$(71,299)$
6	$\$ 250,000$		$\$ 150,000$	0	$\$ 100,000$	$\$ 66,634$
7	$\$ 250,000$		$\$ 150,000$	0	$\$ 100,000$	$\$ 62,275$
8	$\$ 250,000$		$\$ 150,000$	0	$\$ 100,000$	$\$ 58,201$
9	$\$ 250,000$		$\$ 150,000$	0	$\$ 100,000$	$\$ 54,393$
10	$\$ 250,000$		$\$ 150,000$	0	$\$ 100,000$	$\$ 50,835$
Total	$\$ 2,500,000$		$\$ 1,500,000$	0	$\$ 600,000$	$\$ 359,761$

$\operatorname{IRR}=41 \% \mid \operatorname{MIRR}=16.4 \%$

Combining Projects

- Chiller Replacement

| Year | Baseline | Energy Efficient Alternative | | LCC Calculation | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Energy Use | Equipment | Energy Use | Loan | Net Annual
 Benefit (Cost) | PV Annual
 Benefit |
| 0 | | $\$ 500,000$ | | | $\$(500,000)$ | $\$(500,000)$ |
| 1 | $\$ 280,000$ | | $\$ 196,000$ | 0 | $\$ 84,000$ | $\$ 78,505$ |
| 2 | $\$ 280,000$ | | $\$ 196,000$ | 0 | $\$ 84,000$ | $\$ 73,369$ |
| 3 | $\$ 280,000$ | | $\$ 196,000$ | 0 | $\$ 84,000$ | $\$ 68,569$ |
| 4 | $\$ 280,000$ | | $\$ 196,000$ | 0 | $\$ 84,000$ | $\$ 64,083$ |
| 5 | $\$ 280,000$ | | $\$ 196,000$ | 0 | $\$ 84,000$ | $\$ 59,891$ |
| 6 | $\$ 280,000$ | | $\$ 196,000$ | 0 | $\$ 84,000$ | $\$ 55,973$ |
| 7 | $\$ 280,000$ | | $\$ 196,000$ | 0 | $\$ 84,000$ | $\$ 52,311$ |
| 8 | $\$ 280,000$ | | $\$ 196,000$ | 0 | $\$ 84,000$ | $\$ 48,889$ |
| 9 | $\$ 280,000$ | | $\$ 196,000$ | 0 | $\$ 84,000$ | $\$ 45,690$ |
| 10 | $\$ 280,000$ | $\$(250,000)$ | $\$ 196,000$ | 0 | $\$ 334,000$ | $\$ 169,789$ |
| Total | $\$ 2,800,000$ | | $\$ 1,960,000$ | 0 | $\$ 590,000$ | $\$ 217,068$ |

$\operatorname{IRR}=14.2 \% \quad$ MIRR $=10.9 \%$

Combining Projects

- Lighting Retrofit Plus Chiller Replacement

| Year | Baseline | Energy Efficient Alternative | | LCC Calculation | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Energy Use | Equipment | Energy Use | Loan | Net Annual
 Benefit (Cost) | PV Annual
 Benefit |
| 0 | | $\$ 700,000$ | | | $\$(700,000)$ | $\$(700,000)$ |
| 1 | $\$ 530,000$ | | $\$ 346,000$ | 0 | $\$ 184,000$ | $\$ 171,963$ |
| 2 | $\$ 530,000$ | | $\$ 346,000$ | 0 | $\$ 184,000$ | $\$ 160,713$ |
| 3 | $\$ 530,000$ | | $\$ 346,000$ | 0 | $\$ 184,000$ | $\$ 150,199$ |
| 4 | $\$ 530,000$ | | $\$ 346,000$ | 0 | $\$ 184,000$ | $\$ 140,373$ |
| 5 | $\$ 530,000$ | $\$ 200,000$ | $\$ 346,000$ | 0 | $\$(16,000)$ | $\$(11,408)$ |
| 6 | $\$ 530,000$ | | $\$ 346,000$ | 0 | $\$ 184,000$ | $\$ 122,607$ |
| 7 | $\$ 530,000$ | | $\$ 346,000$ | 0 | $\$ 184,000$ | $\$ 114,586$ |
| 8 | $\$ 530,000$ | | $\$ 346,000$ | 0 | $\$ 184,000$ | $\$ 107,090$ |
| 9 | $\$ 530,000$ | | $\$ 346,000$ | 0 | $\$ 184,000$ | $\$ 100,084$ |
| 10 | $\$ 530,000$ | $\$(250,000)$ | $\$ 346,000$ | 0 | $\$ 434,000$ | $\$ 220,624$ |
| Total | $\$ 5,300,000$ | | $\$ 3,460,000$ | 0 | $\$ 1,190,000$ | $\$ 576,829$ |

$\mathrm{SP}=3.8 \mathrm{yrs}|\mathrm{ROI}=26 \%| \mathrm{IRR}=21.2 \% \mid \mathrm{MIRR}=13.5 \%$

Combining Projects

- Comprehensive Project (80\% financed at 7\% rate)

Year	Baseline	Energy Efficient Alternative		LCC Calculation		
	Energy Use	Equipment	Energy Use	Loan	Net Annual Benefit (Cost)	PV Annual Benefit
0		$\$ 140,000$			$\$(140,000)$	$\$(140,000)$
1	$\$ 530,000$		$\$ 346,000$	$\$ 78,025$	$\$ 105,975$	$\$ 99,042$
2	$\$ 530,000$		$\$ 346,000$	$\$ 78,025$	$\$ 105,975$	$\$ 92,563$
3	$\$ 530,000$		$\$ 346,000$	$\$ 78,025$	$\$ 105,975$	$\$ 86,507$
4	$\$ 530,000$		$\$ 346,000$	$\$ 78,025$	$\$ 105,975$	$\$ 80,848$
5	$\$ 530,000$	$\$ 40,000$	$\$ 346,000$	$\$ 78,025$	$\$ 65,975$	$\$ 47,039$
6	$\$ 530,000$		$\$ 346,000$	$\$ 116,043$	$\$ 67,957$	$\$ 63,511$
7	$\$ 530,000$		$\$ 346,000$	$\$ 116,043$	$\$ 67,957$	$\$ 45,283$
8	$\$ 530,000$		$\$ 346,000$	$\$ 116,043$	$\$ 67,957$	$\$ 42,320$
9	$\$ 530,000$		$\$ 346,000$	$\$ 116,043$	$\$ 67,957$	$\$ 39,552$
10	$\$ 530,000$	$\$(250,000)$	$\$ 346,000$	$\$ 116,043$	$\$ 317,957$	$\$ 172,948$
Total	$\$ 5,300,000$		$\$ 3,460,000$	$\$ 970,340$	$\$ 939,660$	$\$ 629,612$

$$
\text { SP= } 3.8 \mathrm{yrs}|\mathrm{ROI}=26 \%| \mathrm{IRR}=98 \% \mid \mathrm{MIRR}=26 \%
$$

Poll Question

- Would you like someone from PSE\&G to contact you?
a) Yes
b) No
- How valuable has this Webinar been to you?
a) Not valuable at all.
b) Slightly valuable.
c) Moderately valuable.
d) Very valuable.
e) Extremely valuable.

Resources

- Excel Spreadsheet
- IRR(range, estimated_irr)
$f_{\mathrm{x}}=\operatorname{IRR}(\mathrm{A} 1: \mathrm{A} 5)$
- MIRR(range, finance_rate, reinvestment_rate) $f_{\mathrm{x}}=\operatorname{MIRR}(\mathrm{A} 1: \mathrm{A} 5,5 \%, 8 \%)$
- Building Life-Cycle Cost (BLCC5) from NIST
- Building Life-Cycle Cost Program
- Java with an XML file format
- Energy Escalation Rate Calculator
- Handbook 135 (Life-Cycle Costing Manual for FEMP)
- Annual Supplement to Handbook 135
- Energy Price Indices and Discount Factors

Resources

- Energy eVALUator 4.0 from Energy Design Resources
- Considers the major factors (financing costs, inflation, discount rates) over the life of a project
- Considers productivity impacts
- Produces a set of bottom-line economic parameters as well as a year-by-year cash flow analysis
- Expresses bottom-line numbers with an associated uncertainty band.
- Energy Life-Cycle Cost Analysis (ELCCA) from the Washington State Department of General Administration
- Excel spreadsheet
- Easily handles detailed energy rate information
- Accounts for the initial cost of construction or renovating a facility
- Accounts for the cost of owning and operating a facility over its useful life

Upcoming PSE\&G Webinars:

- From Symptoms to Solutions: Managing Power Quality Issues Tuesday, April 25, 2017 2:00 pm REGISTER HERE
- The Best in Energy-Efficient Commercial Lighting

Tuesday, May 23, 2017 2:00 pm
REGISTER HERE

Q\&A Session

Questions?

- Contact Information:
- Email:
- LargeCustomerSupport@pseg.com
- Phone:
- 1-855-249-7734
- Websites:
- http://www.pseg.com/business/small large business/index.jsp
- http://www.njcleanenergy.com/

EnergeLink

[^0]: Source: Cleantech Approach, Lighting Controls-Savings, Solutions, Payback, and Vendor Profiles

