

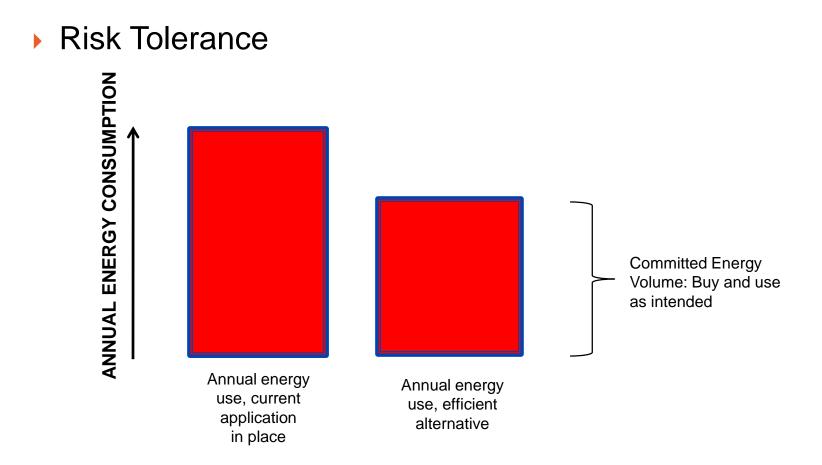
Money Talks: Energy-Efficiency Financial Analysis

March 28, 2017

Meet Your Presenters:

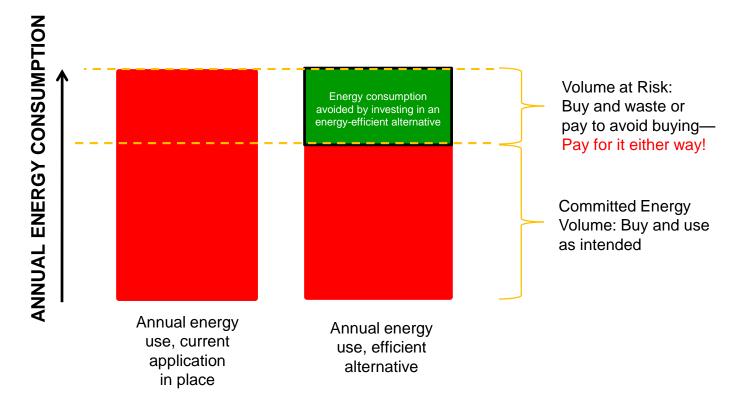
Mike Carter

Contents


- Financial Decisions
- Simple Payback
- Time Value of Money
- Net Present Value
- Internal Rate of Return
- Life-Cycle Cost Analysis
- Combining Projects
- Resources

Source: Svilen Milev at www.sxc.hu

Financial Decisions

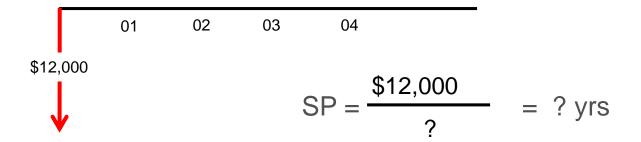

Source: Christopher Russell, Energy PathFINDER

4

Financial Decisions

Risk Tolerance

Source: Christopher Russell, Energy PathFINDER


Financial Decisions

- Risk Tolerance
 - Price Volatility
 - Energy
 - Equipment
 - Labor
 - Lost Opportunity
 - Incentive programs
 - Available capital

- How long until I get my money back?
- Is this an investment I should make?

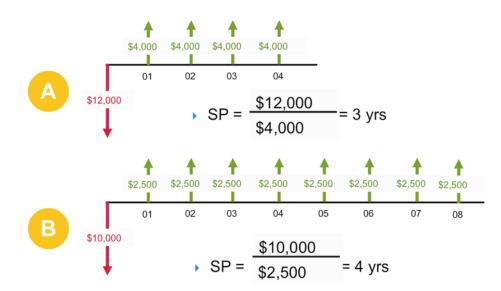
Simple Payback **Initial Investment Cost** SP= = Payback Period **Annual Savings** ↑ \$4,000 \$4,000 \$4,000 \$4,000 02 04 01 03 A \$12,000 \$12,000 SP = = 3 yrs \$4,000

- How long until I get my money back?
- Is this an investment I should make?

- So why do we rely on simple payback?
 - Our operating goals, budgets, bonuses, and rewards are fixed in an annual (time) format*
 - Simple payback seems to fit naturally in our calendar-driven world*
 - Quick and easy to use
 - Easy to understand
 - Investment questions are reduced to yes or no decisions
- What are the limitations of simple payback?
 - Does not account for other energy savings or monetary net benefits that occur *after* the payback period
 - Does not account for the time value of money

*Christopher Russell, Energy PathFINDER

Which is the better investment?



Poll Question

Which is the better financial investment?

- a) Project A with a 3 year simple payback
- b) Project B with a 4 year simple payback

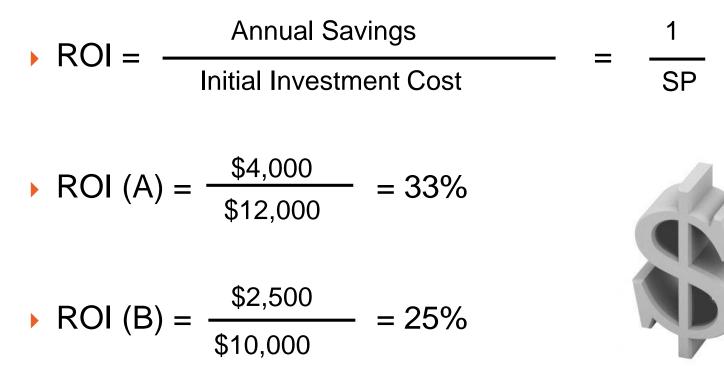
- When is simple payback best applied?
 - Capital cost is relatively small for your budget
 - Only one significant life-cycle operating cost (for example, electricity)
 - Steady annual cash flow
 - Simple equipment comparison (high-efficiency, roof-top AC unit vs. *code-minimum* unit)
 - Equipment is stock, not custom
- Equipment examples
 - Linear fluorescent lamps
 - LED lamps
 - Electronic fluorescent ballasts
 - Exit signs
 - Lighting controls
 - Lighting fixtures

- Payback Periods on Lighting Control Solutions from Electricity Savings Only (Years)
 - Assumes \$0.12/kWh, 88 ft²/fixture, 12 hrs/day @ 100% else @35%, no incentives

Payback Periods on Lighting Control Solutions, Years										
Electric	Industry Range of Pricing for Lighting Controls (Per Sq. Ft. Installed)									
Savings	\$1.00	\$1.25	\$1.50	\$1.75	\$2.00	\$2.25	\$2.50			
35%	4.3	5.4	6.4	7.5	8.6	9.6	10.7			
40%	3.7	4.7	5.6	6.6	7.5	8.4	9.4			
45%	3.3	4.2	5.0	5.8	6.7	7.5	8.3			
50%	3.0	3.7	4.5	5.2	6.0	6.7	7.5			
55%	2.7	3.4	4.1	4.8	5.5	6.1	6.8			

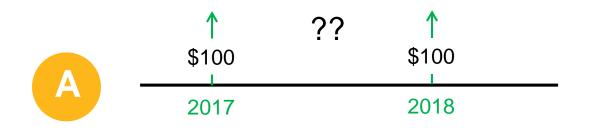
Source: Cleantech Approach, Lighting Controls-Savings, Solutions, Payback, and Vendor Profiles

Sensitivity: Payback Periods at \$1.50 Per Sq. Ft. Installed


• Assumes 88 ft²/fixture, 12 hrs/day @ 100% else @35%, no incentives

Payb	Payback Periods on Lighting Control Solutions, Years									
Electric		Electricity Price per Kilowatt-Hour								
Savings	\$0.06	\$0.09	\$0.12	\$0.15	\$0.18					
35%	12.9	8.6	6.4	5.1	4.3					
40%	11.2	7.5	5.6	4.5	3.7					
45%	10.0	6.7	5.0	4.0	3.3					
50%	9.0	6.0	4.5	3.6	3.0					
55%	8.2	5.5	4.1	3.3	2.7					

Source: Cleantech Approach, Lighting Controls-Savings, Solutions, Payback, and Vendor Profiles


Simple ROI

Source: www.sxc.hu

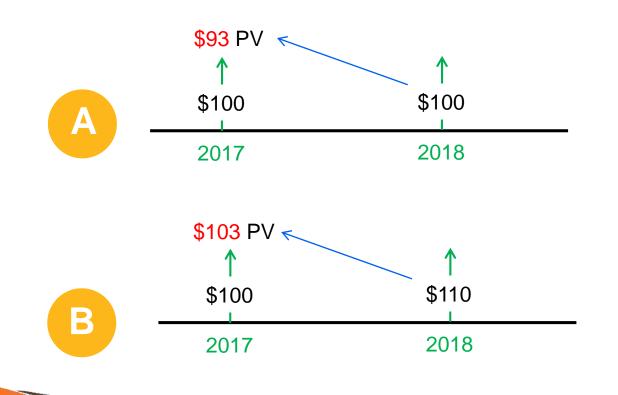
Which would you prefer?

Which would you prefer?

Discount factor (DF)

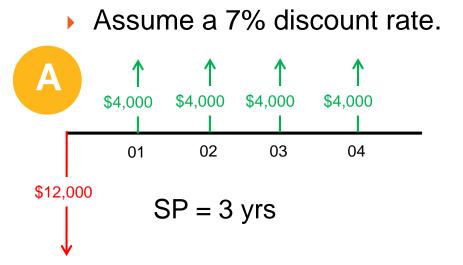
 $DF = 1/(1+R)^N$ R= Discount rate N = Number of periods (years)

Example: $1/(1+0.07)^3 = 0.82$


Year	DF (DR=7%)
0	1.00
1	0.93
2	0.87
3	0.82
4	0.76

- Which would you prefer?
 - Discount rate is 7%
 - Today's value of \$100 one year from now
 - = \$100/(1+discount rate)
 - = \$100/1.07
 - = \$93 today
 - Today's value of \$110 one year from now
 - = \$110/(1+discount rate)
 - = \$110/1.07
 - = \$103 today

- Which would you prefer?
 - Discount rate is 7%



- Present Value of Future Cash Flow
 - At a discount rate of 7%, the \$100 received one year from now is worth \$93 to us today.
 - Could invest the money in a financial instrument
 - Could invest in energy efficiency and decrease our costs
 - Since money has time value, the present value of a promised future amount is worth less the longer you wait to receive it.

Net Present Value

Year (N)	Discount Rate	DF 1/(1+R) ^N	Cash Flow	Present Value
1	7%	0.93	\$4,000	\$3,720
2	7%	0.87	\$4,000	\$3,480
3	7%	0.82	\$4,000	\$3,280
4	7%	0.76	\$4,000	\$3,040
	Totals		\$16,000	\$13,520

- Net present value (NPV) is the sum of the present value and the initial (negative) investment.
 NPV = \$13,520 \$12,000 = \$1,520
- Cash flow = \$16,000 \$12,000 = \$4,000

Year (N)	Discount Rate	DF 1/(1+R) ^ℕ	Cash Flow	Present Value
1	7%	0.93	\$2,500	\$2,325
2	7%	0.87	\$2,500	\$2,175
3	7%	0.82	\$2,500	\$2,050
4	7%	0.76	\$2,500	\$1,900
5	7%	0.71	\$2,500	\$1,775
6	7%	0.67	\$2,500	\$1,675
7	7%	0.62	\$2,500	\$1,550
8	7%	0.58	\$2,500	\$1,450
	Totals		\$20,000	\$14,900


NPV = \$14,900 - \$10,000 = \$4,900

Cash flow = \$20,000 - \$10,000 = \$10,000

Net Present Value

Which is the better investment?

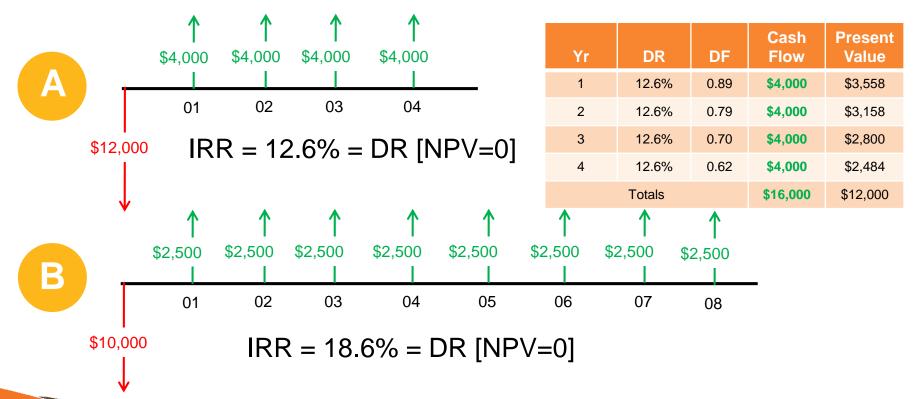
Poll Question

Which is the better financial investment?

- a) Project A
- b) Project B

A
$$SP = \frac{\$12,000}{\$4,000} = 3 \text{ yrs}$$
 $NPV = \$1,520$
Cash flow = \$4,000
B $SP = \frac{\$10,000}{\$2,500} = 4 \text{ yrs}$ $NPV = \$4,928$
Cash flow = \$10,000

Net Present Value


- Advantages of NPV
 - Incorporates all relevant information
 - Single NPV number allows for easy comparisons across project types
 - Allows for easy comparison of multiple financing alternatives (cash, loan, bond, lease)
- Disadvantages of NPV
 - Does not expressly account for differing useful lives between projects being compared
 - Residual value compensates for this
 - High information requirements
 - More complicated calculation

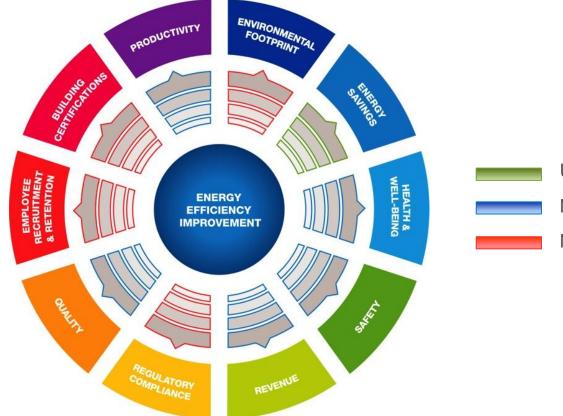
Internal Rate of Return

- The internal rate of return (IRR) is the discount rate that makes the net present value of the project equal to zero.
 - Assumes you will reinvest positive cash flows at the IRR rate

Internal Rate of Return

- Advantages of IRR*
 - Easier to understand than NPV
 - Relates to the cost of borrowing
 - Easily compared to *hurdle rate* for decision making
- Disadvantages of IRR*
 - Removes the sensitivity of the analysis to alternative discount rates
 - Cannot be calculated for 100% debt financing
 - Does not account for the project's magnitude or its impact on profits

*Guide to Optimizing Hospital Facility Investments, BetterBricks

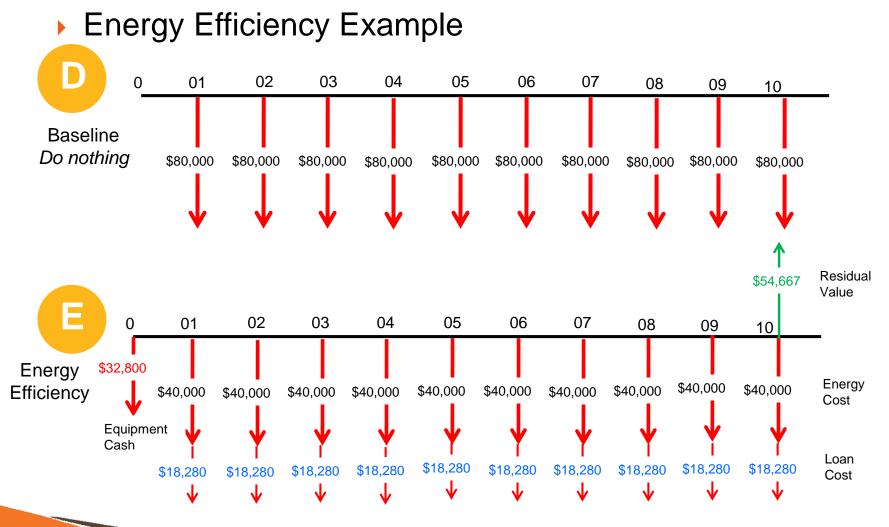

- Life-Cycle Cost
 - The total cost of owning, operating, maintaining, and (eventually) disposing of the building system(s) over a given study period.
 - For energy efficiency projects, we compare project alternatives with a baseline
 - Initial equipment investment cost
 - Finance costs
 - Equipment replacement costs
 - Disposal cost
 - Energy cost
 - Operation, maintenance, and repair costs

Source: www.sxc.hu

Non-Energy Benefits

Utility cost savings Non-utility cost savings Non-financial benefits

Energy Efficiency Example


Equipment Cost	\$164,000*	Loan Period (Yrs)	10	Discount Rate	7%	Baseline Energy	\$80,000
Cash %	20%	Study Period (Yrs)	10	Loan Rate	7%	Annual Savings	\$40,000
Financed Amount	\$131,200	Useful Life (Yrs)	15	Inflation Rate	0%	Residual Value**	\$54,667

*Includes rebates and increased M&V costs

** At end of Study Period (Straight Line Depreciation)

$$ROI = \frac{\$40,000}{\$164,000} = 24\%$$

Year	Baseline	Energy Efficient Alternative			LCC Calc	ulation
	Energy Use	Equipment	Energy Use	Loan	Net Annual Benefit (Cost)	PV Annual Benefit
0		\$32,800			\$(32,800)	\$(32,800)
1	\$80,000		\$40,000	\$18,280	\$21,720	\$20,299
2	\$80,000		\$40,000	\$18,280	\$21,720	\$18,971
3	\$80,000		\$40,000	\$18,280	\$21,720	\$17,730
4	\$80,000		\$40,000	\$18,280	\$21,720	\$16,570
5	\$80,000		\$40,000	\$18,280	\$21,720	\$15,486
6	\$80,000		\$40,000	\$18,280	\$21,720	\$14,473
7	\$80,000		\$40,000	\$18,280	\$21,720	\$13,526
8	\$80,000		\$40,000	\$18,280	\$21,720	\$12,641
9	\$80,000		\$40,000	\$18,280	\$21,720	\$11,814
10	\$80,000	\$(54,667)	\$40,000	\$18,280	\$76,387	\$38,831
Total	\$800,000		\$400,000	\$182,800	\$239,067	\$147,541

• Total cost = 32,800 + 182,800 = 215,600

Upgrade NPV = \$147,541

IRR = 66.4%

Modified IRR (MIRR)

- IRR assumes interim positive cash flows (savings) are re-invested at the IRR percentage for the remaining period.
 - If the IRR percentage is more than 10 percentage points above the Discount Rate, this is probably not a valid assumption.

$$MIRR = \sqrt[n]{\frac{-FV \text{ (positive cash flows, reinvestment rate)}}{PV \text{ (negative cash flows, finance rate)}}} - \frac{1}{PV}$$

- Modified IRR (MIRR)
 - Example

Year	Cash Flow
0	-\$1,000
1	-\$4,000
2	+\$5,000
3	+\$2,000

IRR = 25.5% MIRR = 17.9%

> Assumes finance rate of 10% and reinvestment rate (cost of capital) of 12%

$$\text{MIRR} = \sqrt[1]{-FV \text{ (positive cash flows, 12%)}} - \text{PV (negative cash flows, 10%)}$$

Financing Method	Total Cost	10 Yr. Total Savings	Simple Payback	ROI%	IRR%	MIRR %	LCC Savings
Internal (Cash)	\$200,000	\$400,000	5 Yr	20%	17%	12%	\$114,833
Philanthropic	\$0	\$400,000	N/A	N/A	N/A	N/A	\$314,833
Private Loan	\$262,928	\$400,000	5 Yr	20%	45%	22.8%	\$118,258
Public Loan (state)	\$243,646	\$400,000	5 Yr	20%	49.7%	23.8%	\$131,801
Tax-Exempt Bond	\$280,000	\$400,000	5 Yr	20%	79.2%	18.1%	\$137,309
Self-Issued Bond	\$312,000	\$400,000	5 Yr	20%	70.9%	17.6%	\$114,833
Municipal Bond	\$280,000	\$400,000	5 Yr	20%	79.2%	18.1%	\$137,309
Capital Lease	\$293,729	\$400,000	N/A	N/A	23.7%	16.2%	\$93,062
Lease w/Purchase	\$267,991	\$400,000	N/A	N/A	22.6%	14.3%	\$92,327
Lease w/Renewal	\$255,981	\$400,000	N/A	N/A	25.8%	16.2%	\$82,049
PC*-Guaranteed (Private)	\$215,600	\$400,000	4.1 Yr	24%	66.5%	26.9%	\$147,541
PC-Guaranteed (Public)	\$199,790	\$400,000	4.1 Yr	24%	71.3%	27.6%	\$158,647
PC-Shared Savings	\$240,858	\$400,000	4.1 Yr	24%	36.5%	20.3%	\$119,573

*Performance Contacting

Source: Guide to Optimizing Hospital Facility Investments, BetterBricks

Lighting Retrofit

Equipment Cost	\$200,000*	Loan Period (Yrs)	5	Discount Rate	7%	Baseline Energy	\$250,000	
Cash %	100%	Study Period (Yrs)	10	Loan Rate	7%	Annual Savings	\$100,000	$\overline{}$
Financed Amount	0	Useful Life (Yrs)	5	Inflation Rate	0%	Residual Value**	0	

SP = 2 years | ROI = 50%

\$150,000 annual cost

Chiller Replacement

Equipment Cost	\$500,000*	Loan Period (Yrs)	10	Discount Rate	7%	Baseline Energy	\$280,000	
Cash %	100%	Study Period (Yrs)	10	Loan Rate	7%	Annual Savings	\$84,000	
Financed Amount	0	Useful Life (Yrs)	20	Inflation Rate	0%	Residual Value**	\$250,000	

SP = 6 years ROI = 17%

\$196,000 annual cost

Lighting Retrofit

Year	Baseline	Energ	Energy Efficient Alternative			ulation
	Energy Use	Equipment	Energy Use	Loan	Net Annual Benefit (Cost)	PV Annual Benefit
0		\$200,000			\$(200,000)	\$(200,000)
1	\$250,000		\$150,000	0	\$100,000	\$93,458
2	\$250,000		\$150,000	0	\$100,000	\$87,344
3	\$250,000		\$150,000	0	\$100,000	\$81,630
4	\$250,000		\$150,000	0	\$100,000	\$76,290
5	\$250,000	\$200,000	\$150,000	0	\$(100,000)	\$(71,299)
6	\$250,000		\$150,000	0	\$100,000	\$66,634
7	\$250,000		\$150,000	0	\$100,000	\$62,275
8	\$250,000		\$150,000	0	\$100,000	\$58,201
9	\$250,000		\$150,000	0	\$100,000	\$54,393
10	\$250,000		\$150,000	0	\$100,000	\$50.835
Total	\$2,500,000		\$1,500,000	0	\$600,000	\$359,761

IRR = 41% | MIRR = 16.4%

Chiller Replacement

Year	Baseline	Energy Efficient Alternative			LCC Calculation	
	Energy Use	Equipment	Energy Use	Loan	Net Annual Benefit (Cost)	PV Annual Benefit
0		\$500,000			\$(500,000)	\$(500,000)
1	\$280,000		\$196,000	0	\$84,000	\$78,505
2	\$280,000		\$196,000	0	\$84,000	\$73,369
3	\$280,000		\$196,000	0	\$84,000	\$68,569
4	\$280,000		\$196,000	0	\$84,000	\$64,083
5	\$280,000		\$196,000	0	\$84,000	\$59,891
6	\$280,000		\$196,000	0	\$84,000	\$55,973
7	\$280,000		\$196,000	0	\$84,000	\$52,311
8	\$280,000		\$196,000	0	\$84,000	\$48,889
9	\$280,000		\$196,000	0	\$84,000	\$45,690
10	\$280,000	\$(250,000)	\$196,000	0	\$334,000	\$169,789
Total	\$2,800,000		\$1,960,000	0	\$590,000	\$217,068

IRR = 14.2% | MIRR = 10.9%

Lighting Retrofit Plus Chiller Replacement

Year	Baseline	Energy Efficient Alternative			LCC Calculation	
	Energy Use	Equipment	Energy Use	Loan	Net Annual Benefit (Cost)	PV Annual Benefit
0		\$700,000			\$(700,000)	\$(700,000)
1	\$530,000		\$346,000	0	\$184,000	\$171,963
2	\$530,000		\$346,000	0	\$184,000	\$160,713
3	\$530,000		\$346,000	0	\$184,000	\$150,199
4	\$530,000		\$346,000	0	\$184,000	\$140,373
5	\$530,000	\$200,000	\$346,000	0	\$(16,000)	\$(11,408)
6	\$530,000		\$346,000	0	\$184,000	\$122,607
7	\$530,000		\$346,000	0	\$184,000	\$114,586
8	\$530,000		\$346,000	0	\$184,000	\$107,090
9	\$530,000		\$346,000	0	\$184,000	\$100,084
10	\$530,000	\$(250,000)	\$346,000	0	\$434,000	\$220,624
Total	\$5,300,000		\$3,460,000	0	\$1,190,000	\$576,829

SP= 3.8 yrs | ROI = 26% | IRR = 21.2% | MIRR = 13.5%

Comprehensive Project (80% financed at 7% rate)

Year	Baseline	Energy Efficient Alternative			LCC Calculation	
	Energy Use	Equipment	Energy Use	Loan	Net Annual Benefit (Cost)	PV Annual Benefit
0		\$140,000			\$(140,000)	\$(140,000)
1	\$530,000		\$346,000	\$78,025	\$105,975	\$99,042
2	\$530,000		\$346,000	\$78,025	\$105,975	\$92,563
3	\$530,000		\$346,000	\$78,025	\$105,975	\$86,507
4	\$530,000		\$346,000	\$78,025	\$105,975	\$80,848
5	\$530,000	\$40,000	\$346,000	\$78,025	\$65,975	\$47,039
6	\$530,000		\$346,000	\$116,043	\$67,957	\$63,511
7	\$530,000		\$346,000	\$116,043	\$67,957	\$45,283
8	\$530,000		\$346,000	\$116,043	\$67,957	\$42,320
9	\$530,000		\$346,000	\$116,043	\$67,957	\$39,552
10	\$530,000	\$(250,000)	\$346,000	\$116,043	\$317,957	\$172,948
Total	\$5,300,000		\$3,460,000	\$970,340	\$939,660	\$629,612

SP= 3.8 yrs | ROI = 26% | IRR = 98% | MIRR = 26%

Poll Question

- Would you like someone from PSE&G to contact you?
 - a) Yes
 - b) No
- How valuable has this Webinar been to you?
 - a) Not valuable at all.
 - b) Slightly valuable.
 - c) Moderately valuable.
 - d) Very valuable.
 - e) Extremely valuable.

Resources

- Excel Spreadsheet
 - IRR(range, estimated_irr)
 f_x=IRR(A1:A5)
 - MIRR(range, finance_rate, reinvestment_rate)

*f*_x =MIRR(A1:A5, 5%, 8%)

- Building Life-Cycle Cost (BLCC5) from NIST
 - Building Life-Cycle Cost Program
 - Java with an XML file format
 - Energy Escalation Rate Calculator
 - Handbook 135 (Life-Cycle Costing Manual for FEMP)
 - Annual Supplement to Handbook 135
 - Energy Price Indices and Discount Factors

Resources

- Energy eVALUator 4.0 from Energy Design Resources
 - Considers the major factors (financing costs, inflation, discount rates) over the life of a project
 - Considers productivity impacts
 - Produces a set of *bottom-line* economic parameters as well as a year-by-year cash flow analysis
 - Expresses bottom-line numbers with an associated uncertainty band.
- Energy Life-Cycle Cost Analysis (ELCCA) from the Washington State Department of General Administration
 - Excel spreadsheet
 - Easily handles detailed energy rate information
 - Accounts for the initial cost of construction or renovating a facility
 - Accounts for the cost of owning and operating a facility over its useful life

Upcoming PSE&G Webinars:

From Symptoms to Solutions: Managing Power Quality Issues Tuesday, April 25, 2017 2:00 pm REGISTER HERE

The Best in Energy-Efficient Commercial Lighting Tuesday, May 23, 2017 2:00 pm REGISTER HERE

Q&A Session

Questions?

- Contact Information:
 - Email:
 - LargeCustomerSupport@pseg.com
 - Phone:
 - 1-855-249-7734
 - Websites:
 - http://www.pseg.com/business/small_large_business/index.jsp
 - http://www.njcleanenergy.com/

