

From Symptoms to Solutions: Managing Power Quality Issues

April 25, 2017

Meet Your Presenters:

Mike Carter

Topics

- Power Quality Symptoms
- What Is Normal?
- Power Quality Approach
 - Find and fix
 - Ride-through Solutions
 - Protection/Compensation Schemes
- Other Power Quality Solutions

What Can Go Wrong?

Power Quality Problem Defined

- Any power problem manifested in voltage, current, or frequency deviations that results in failure or misoperation of customer equipment
 - Generally, quality of the voltage
 - Surveys show that 65% to 85% of power quality problems are the result of something happening within the facility
 - On the customer side of the point of common coupling (PCC)
 - PCC—the point between the end user or customer where another customer can be served
 - Perfect power quality is not attainable

Electromagnetic Phenomena (IEEE 1159)

- Transients
 - Impulsive
 - Oscillatory
- Short-duration variations (0.5 cycles 1 minute)
- Long-duration variations (> 1 minute)
- Voltage imbalance/unbalance
- Inductance and capacitance effects
 - Power Factor
- Waveform distortion
 - Harmonics
 - Noise
- Voltage fluctuation/flicker (<25 Hz)</p>

Electromagnetic Phenomena

- Transients—short-term (generally < 0.5 cycle) frequency change in the steady-state condition.</p>
- Low frequency transients
- High frequency transients (~100 kHz)

Electromagnetic Phenomena

- Short-duration variations (0.5 cycles 1 minute)
- Long-duration variations (> 1 minute)

Category	Typical Duration
Instantaneous	0.5-30 cycles
Momentary	30 cycles – 3 seconds
Temporary	3 seconds – 1 minute

Category	Voltage Magnitude
Interruption	<0.1 pu*
Sag (dip)	0.1 – 0.9 pu
Swell	1.1 – 1.8 pu

Category	Voltage Magnitude
Interruption, sustained	0.0 pu*
Overvoltages	1.1 – 1.2 pu
Undervoltages	0.8 – 0.9 pu

Electromagnetic Phenomena

- Voltage imbalance/unbalance (phase-to-phase)
 - Causes overheating that deteriorates motor winding insulation
 - Decreases efficiency

Poll Question

- What percentage of power quality problems originate from inside the utility customer's facility?
 - a) 5% to 10%
 - b) 40% to 50%
 - c) 65% to 85%

Voltage Sags

- Sags are mostly instantaneous (<30 cycles)
 - Duration of 166ms (10 cycles) or less
 - Depth of 20% to 30%
 - Usually caused by weather, trees, and public interference
 - Average of 28 distribution sags per year
 1 minute (70% are single-phase)

Interruptions

- In the EPRI study, 37% < 0.5 seconds and 66% < 1.5 seconds
 - Average of 1 to 2 per year at distribution level

Typical Recloser Operation During a Feeder Fault

Voltage Regulation Standards

- The national standard in the U.S. is ANSI C84.1
 - Range A is for normal conditions
 - +/- 5% on a 120-volt base at the service entrance
 - -2.5% to +5% for services above 600 volts
 - Range B is for short durations or unusual conditions

ANSI C84.1 Requirements for Voltage Regulation				
Page	Range A		Range B	
Base	+5%	-5%	+5.8%	-8.3%
120V	126	114	127	110
480V	504	456	508	440

Acceptable Sags/Interruptions

 Voltage variation tolerance curves

The ITIC* curve

*ITIC- Information Technology Industry Council

PSEG

Systematic Approach

1. Find and fix it first!

2. Make it survive or ride-through.

3. Compensate when it does occur.

Poll Questions

- Which occurs more frequently?
 - a) Interruptions
 - b) Sags
- Which lasts longer each occurrence?
 - a) Interruptions
 - b) Sags

Interruption

Sag

Find and Fix the Problem

Why Equipment Trips from Sags*

- Not enough voltage to sustain operation
- An undervoltage circuit trips
- An unbalance relay trips
- A quick-acting relay shuts the system down
- A reset circuit may incorrectly trip at the end of the voltage sag

Find and Fix the Problem

Identify Power Quality Problems

- Add a power quality relay
 - PQube three-phase and single-phase monitoring up to 690V, 50/60Hz.
 - Voltage dips, swells, and interruptions
 waveforms and RMS graphs
 - Frequency events, impulse detection, time-triggered snapshots
 - Daily, weekly, monthly trends. Cumulative probability, histograms, and more.
 - Built-in Li-Ion UPS.

Source: Power Standards Lab

Ice Cube Relays

- Use DC instead of AC
 - Control circuits, controllers, input/output devices (I/O), and sensors

Source: Power Quality Solutions, Inc.

Increase Voltage Headroom

- For brownout conditions, <50% sag</p>
 - Choose a different power supply setting range
 - Where your nominal operating voltage is nearer the top of the range
 - For a 240 voltage, choose 95 V to 250 V versus 110 V to 270 V (bad for swells)
 - Connect your single-phase power supply phase-to-phase
 - 208 V versus 120 V for a 90 V to 250 V device because 90 V is 45% of 208 V but 70% of 120 V
 - Reduce the load on your power supply
 - Use a bigger power supply
 - Would be more lightly loaded

Motor Drives

- Change the unbalance, undervoltage, or reset trip settings to achieve <u>ride-through</u>
 - IEEE P1668 contains draft ride-through recommendations
 - Lower the pre-charge point (V₂)
 - Consider oversizing the drive
 - To increase the capacitor bank
 - Add an additional capacitor bank to the DC bus

Source: Allen-Bradley/Rockwell Automation

Breakers and Relays

- Select appropriate circuit breakers (trip curves)
- Slow the Emergency Off (EMO) relay down
 - Increase mechanical mass (such as a contactor)
 - Use a relay hold-in accessory

 Compensate for the upstream voltage sag itself (last resort)

Source: Siemens AG

Protection Schemes

Source: Liebert Corporation

Compensation Schemes

Poll Question

- What is the **first** step in achieving increased ride-through capability?
 - a) Compensate for deviations.
 - b) Fix the source problem.
 - c) Make equipment survive.

Solid-State Voltage Compensation

- Static transfer switch (STS)
 - Utility level protection
 - When a dual distribution feeder service is available
- Low-voltage static series compensator (LV-SSC)
 - <u>Dynamic Sag Corrector</u> (MegaDySC)
 - From 263 kVA to 1330 kVA
 - For ride-through
 - Down to 50% of nominal voltage
 - Up to 12 cycles with no energy storage

Solid-State Voltage Compensation

- Dynamic Sag Corrector (MegaDySC)—from 263-1330 kVA
 - For ride-through to 50% of nominal voltage for up to 12 cycles with no battery storage.

Backup Generators

Capital costs

Capital Costs, \$/kW			
Diesel	Natural	Micro-	Fuel
	Gas	turbine	Cell
\$150-	\$200-	\$1,000	\$3,000-
\$250	\$300		\$4,000

- Roughly 50% of the purchase cost, and can approach \$10,000 for a 100 kW unit
- Does not change drastically with size, so there is no penalty for oversizing

Maintenance costs

- \$500 to \$1,000 per year
- Includes an oil change and tune up every 1,500 hours
- Diesels considered most mechanically reliable

Automatic Transfer Switches

- Open-transition break before-make switching
 - Lowest cost
 - Most reliable
 - Requires one-half to three seconds decay interval

Generator Compatibility with UPS

- UPS feeds non-linear harmonics to generators
 - Power pulsations upon load changes
 - Overheating
 - Bypass not available alarms from the UPS

Solid-State Voltage Compensation

- Voltage Dip-Proofing Inverter (DPI)
 - Square-wave output to the load
 - An off-line device
 - Transfer time less than 700 μs
 - Up to 3 kVA and 25A for 120V
 - Up to 4.5 kVA and 20A for 208/230V
 - Good for interruptions and sags
- Voltage Dip Compensators (VDC)
 - Good for sags down to 36% for two seconds

Source: Measurlogic, Inc.

Dynamic Sag Corrector (ProDySC)

From 9 to 167 kVA

Constant Voltage/Ferroresonant Transformers

- Maintains two separate magnetic paths with limited coupling between them
- Provides 90% output at input voltage range of ±40%
- Inefficient at low loads
- Current limited
 - Not good for high inrush current applications such as motors
- Size at least 2.5 times the nominal VA load requirement

Poll Question

- What two metrics determine what type of compensation equipment to use?
 - a) Duration
 - b) Frequency
 - c) Harmonic distortion
 - d) Magnitude

Uninterruptible Power Supply (UPS)

- Three types
 - Online or true UPS (double conversion)
 - Offline UPS (standby battery and inverter)
 - Hybrid or line-interactive or direct ferroresonant transformer UPS
- Energy Storage (≈50% of system cost)
 - Lead Acid Batteries
 - Flywheels
 - Ultra-capacitors
- UPS cost
 - \$300-2,000 per KVA
 - 5 KVA for doctor's office is \$1,500 to \$2,000
 - 10-20 kW for retail chain is \$15,000 to \$20,000
 - 1 MW for data center is \$400,000 plus \$200,000 installation
 - Flywheel is 50% more

Source: LBNL

Uninterruptible Power Supply (UPS)

- Online UPS (double conversion or true online)
 - Continuously powers the load
 - No switchover time
 - Best power conditioning
 - Best waveform
 - Delta converter more efficient than double conversion

Uninterruptible Power Supply (UPS)

- Offline UPS (standby)
 - Only supplies power when power is interrupted
 - Switchover time can be a problem
 - Square nature of sine wave can cause problems
 - Only conditions power during interruption

Uninterruptible Power Supply (UPS)

- Hybrid or line-interactive UPS
 - Supplies additional power during sags
 - Provides some power conditioning
- Hybrid direct ferroresonant transformer
 - UPS supports voltage regulation of ferroresonant transformer
 - Maintains output briefly when a total outage occurs
 - Can be unstable with PF-corrected power supply loads

Line-interactive Standard Operation

Ferroresonant Transformer

Coil Hold-In Devices

- Coil-Lock
 - Provides ride-through for a 75% voltage drop for up to three seconds
 - \$100 to \$140 per unit

Figure 1. Original Installation Start OL Line Contactor Coil Control Input Vac Power Supply ▼ B Neutral Figure 2. After Installation of PQSI Coil-Lock Stop Start Line POSI 3 Contactor Coil-Lock Coil Control Input Vac Power (Refer to Supply **▼** B Figure 3) Neutral

Component Level Protection

Dynamic Sag Corrector (MiniDySC)

From 1.2 kVA to 12 kVA

UPPI PoweRide

- Uses two phases of a three-phase supply as input and a single-phase output; up to 10 kVA
- Works when one of the two input phases is lost

AND the remaining phase drops by 33%

OR

when both of the input phases experience a 33% drop in voltage

Harmonics

Solutions	Advantages	Disadvantages
Active Filters	Can handle load diversity	Highest cost
Broadband Blocking Filters	Makes 6-pulse into 18-pulse equivalent at reasonable cost	One filter per drive
12/18-Pulse Converter	Excellent harmonic control for larger drives (>100 HP)	High cost
Harmonic Mitigating/Phase Shifting Transformers	Substantial (50-80%) reduction in harmonics when used in tandem	Harmonic cancellation highly dependent on load balance
Tuned Filters	A single filter can compensate for multiple drives	Care is needed to ensure that the filter will not become overloaded
K-Rated/Drive Isolation Transformers	Offers series reactance (like line reactors) and provides electrical isolation for some transient protection	No advantage over reactors for reducing harmonics unless used in pairs for phase shifting
DC Choke	Slightly better than AC line reactors for 5th and 7th harmonics and less voltage drop	Not always an option for drives
Line reactors	Inexpensive	May require additional compensation

Harmonic Resonance

- Large amounts of capacitance in parallel with inductance
 - For example PF correction and welders
- Initiated by two events
 - Harmonic producing loads are operating on the power system
 - Capacitor(s) and the source impedance have the same reactance (impedance) at one of the load characteristic frequencies
- Two possible solutions
 - Apply another method of KVAR compensation
 - Harmonic filter, active filter, condenser, and so on OR
 - Change the size of the capacitor bank
 - Over-compensate or under-compensate for the required KVAR and live with the ramifications

Source: Eaton Performance Power Solutions

Poll Question

- Would you like someone from PSE&G to contact you?
 - a) Yes
 - b) No

How valuable has this Webinar been to you?

- a) Not valuable at all.
- b) Slightly valuable.
- c) Moderately valuable.
- d) Very valuable.
- e) Extremely valuable.

Transients

Transient Voltage Surge Protection Device (SPD)

- EMI Solutions
 - Use of Shielded/Armor Cable
 - Use a common-mode choke (CMC)

Source: The Engineering Handbook

Transients

- EMI Solutions (continued)
 - Separate control/signal cables from high-voltage wires
 - Ground the power conductors to the cabinet ground bus and motor ground and place them in a conduit
 - Capture/return emissions to the source with EMI Filters

Source: The Engineering Handbook

Voltage Imbalance/Unbalance

- Regularly monitor voltages at the motor terminals
 - Verify that voltage unbalance < 3% (ANSI C84.1-2006)
- Install <u>phase monitors/protectors</u>

TYPICAL APPLICATION

Upcoming PSE&G Webinars:

The Best in Energy-Efficient Commercial Lighting Tuesday, May 23, 2017 2:00 pm

REGISTER HERE

Were you unable to attend one or more of our PSE&G Webinars? Don't worry, check out this link to the recording of the webinars!

Q&A Session

Questions?

- Contact Information:
 - Email:
 - LargeCustomerSupport@pseg.com
 - Phone:
 - 1-855-249-7734
 - Websites:
 - http://www.pseg.com/business/small_large_business/index.jsp
 - http://www.njcleanenergy.com/

